
Carbon Scrap Version 1.0 20-1

20
CARBON SCRAP
 Demonstration Program: CarbonScrap

The Carbon Scrap Manager and the Scrap

Introduction

The inclusion of the word "Carbon" in the title of this chapter is quite deliberate, reflecting the fact that, in
Carbon, the original Scrap Manager has been redesigned to fully support the needs of the preemptively
scheduled Mac OS X.

Applications which support cut, copy, and paste operations write data to, and read data from, the scrap.
The scrap is a storage area, maintained by the Scrap Manager, which holds the last text, graphics, sounds,
etc., cut or copied by the user.

The various data formats in which data may be written to, and read from, the scrap are called scrap
flavours. A scrap flavour is a self-contained, self-describing stream of bytes which represent a discreet
object such as a picture or text selection. Each scrap flavour has a scrap flavour type and a set of scrap
flavour flags. The scrap may contain data in one or more flavours, each flavour being a different
representation of the same object.

Your application specifies the scrap flavour, or flavours, to be read from, and written to, the scrap. The
ultimate aim is to allow the user to copy and paste documents:

• Within a document created by your application.

• Between different documents created by your application.

• Between documents created by your application and documents created by other applications.

Location of the Scrap

On Mac OS 8/9, space is allocated for the scrap in each application's heap. The system software stores a
handle to the scrap of the current process in the system global variable ScrapHandle. When an application is
launched, data is copied to the newly activated application's heap from the previously active application's
heap. If the scrap is too large to fit in the application's heap, the scrap is copied to disk. In this event, the
handle to the scrap is set to NULL to indicate that the scrap is on disk.

On Mac OS X, the scrap is held by the pasteboard server.

Scrap Reference

A scrap is referred to by a scrap reference. The data type ScrapRef is defined as a pointer to a scrap
reference:

typedef struct OpaqueScrapRef *ScrapRef;

20-2 Version 1.0 Carbon Scrap

Note that, although there is only one scrap, there may be multiple ScrapRef values. A ScrapRef value is
valid only until the scrap is cleared.

Scrap Flavours

Standard Scrap Flavours

Your application should be capable of writing at least one of the following standard scrap flavours to the
scrap and should be capable of reading both:

• 'TEXT' (a series of ASCII characters in the same format as a 'TEXT' resource).

• 'PICT' (a QuickDraw picture in the same format as a 'PICT' resource).

Optional Flavours

Your application may also choose to support the following optional scrap flavours:

• 'styl' (a series of bytes which describe styled text data, and which have the same format as a
TextEdit 'styl' resource).

• 'movv' (a series of bytes which define a movie, and which have the same format as a 'movv' resource).

Private Flavours

It is also possible for your application to use its own private flavour, or flavours, but this should be in
addition to at least one of the standard flavours.

Preferred Flavour

Recall that each flavour in the scrap (assuming there is more than one) is simply a different representation
of the same object.

Your application should have a preferred scrap flavour. When reading data from the scrap, your
application should request its preferred flavour first and only request its next preferred flavour if the
preferred flavour does not exist in the scrap. When writing data to the scrap, your application should write
its preferred flavour first. Any additional flavours should be written in the preferred order.

Implementing Edit Menu Commands

You use the Edit menu Cut, Copy, and Paste commands to implement cutting, copying, and pasting of data
within or between documents. The following are the actions your application should perform to support
these three commands:

Edit Command Actions Performed by Your Application
Cut If there is a current selection range, write the data in the selection range to the scrap and remove the data

from the document.

Copy If there is a current selection range, write the data in the selection range to the scrap.

Paste Read the scrap and insert the data (if any) at the insertion point, replacing any current selection.1

If your application implements a Clear command, it should remove the data in the current selection range
but should not save the data to the scrap.

Cut and Copy — Putting Data in the Scrap

A typical approach to a basic implementation of the Cut and Copy commands is as follows:

• Determine whether the frontmost window is a document window or a dialog.

• If the frontmost window is a document window:

1 The insertion point in a text document is represented by the blinking vertical bar known as the caret. There is a close
relationship between the selection range and the insertion point in that the insertion point is, in effect, an empty selection
range.

Carbon Scrap Version 1.0 20-3

• Call ClearCurrentScrap to purge the current contents of the scrap.

• Call GetCurrentScrap to obtain a reference to the current scrap.

• Determine whether the current selection contains text or a picture.

• If the current selection is text, get a pointer to the selected text and get the size of the selection. If
the current selection is a picture, get a pointer to the picture structure and get the size of that
structure.

• Call PutScrapFlavor to write the data to the scrap, passing the appropriate flavour type in the
flavorType parameter.

• If the command was the Cut command, delete the selection from the current document.

• If the frontmost window is a dialog, use the Dialog Manager functions DialogCut or DialogCopy, as
appropriate, to write the selected data to the scrap.

Paste — Getting Data From the Scrap

When you read the data from the scrap, your application should request the data in the application's
preferred flavour type. If your application determines that that flavour does not exist in the scrap, it should
then request the data in another flavour. If your application does not have a preferred flavour type, it
should read each flavour type that your application supports.

If you request a scrap format that is not in the scrap, the Scrap Manager uses the Translation Manager to
convert any one of the scrap flavour types currently in the scrap into the scrap flavour requested by your
application. The Translation Manager looks for a translator that can perform one of these translations. If
such a translator is available, the Translation Manager uses the translator to translate the data in the scrap
into the requested flavour.

A typical approach to an implementation of the Paste command, for an application that prefers a flavour
type of 'TEXT' as its first preference, is as follows:

• Determine whether the frontmost window is a document window or a dialog.

• If the frontmost window is a document window:

• Call GetCurrentScrap to obtain a reference to the current scrap.

• Call GetScrapFlavorFlags to determine whether the preferred flavour exists in the scrap.

• If the preferred flavour type ('TEXT') does exist, call GetScrapFlavorSize to get the size of the text
data, allocate a relocatable block of that size, and call GetScrapFlavorData to read the data into that
block. Copy the data in the relocatable block to the current document at the insertion point.

• If the preferred flavour type does not exist, call GetScrapFlavorFlags again to determine whether
the next preferred flavour (say, 'PICT') exists in the scrap. If it does, call GetScrapFlavorSize to
get the size of the picture data, allocate a relocatable block of that size, and call
GetScrapFlavorData to read the data into that block. Call DrawPicture to draw the picture described
by the data in the relocatable block in the current document at the insertion point.

• If the frontmost window is a , use the Dialog Manager function DialogPaste to paste the text from the
scrap in the dialog.

Enabling the Paste Menu Item

Your application can determine whether to enable the Paste item in the Edit menu by calling
GetScrapFlavorFlags to determine whether the scrap contains data of the flavour type specified in that call.
GetScrapFlavorFlags returns noErr if the specified flavour exists.

Example

Fig 1 illustrates two cases, both of which deal with a user copying a picture consisting of text from a source
document created by one application to a destination document created by another application.

20-4 Version 1.0 Carbon Scrap

In the first case, the source application has chosen to write only the 'PICT' flavour to the scrap, and the
destination application has pasted the data, in that flavour, to its document.

In the second case, the source application has chosen to write both the 'TEXT' and 'PICT' flavours to the
scrap, and the destination application has chosen the 'TEXT' flavour as the preferred flavour for the paste.
The data is thus inserted into the document as editable text.

FIG 1 - SPECIFYING FLAVOURS TO WRITE TO AND READ FROM THE DESK SCRAP

CASE 1 - SOURCE APPLICATION WRITES 'PICT' FLAVOUR ONLY

Document created by source application Scrap Document created by destination application

Document created by source application Scrap Document created by destination application

Costly thy habit as thy purse can buy,
But not express'd in fancy; rich not gaudy;
For the apparel oft proclaims the man,
And they in France of the bext rank and station
Are of the most select and generous chief in that.

Costly thy habit as thy purse can buy,
But not express'd in fancy; rich not gaudy;
For the apparel oft proclaims the man,
And they in France of the bext rank and station
Are of the most select and generous chief in that.

For loan oft loses both itself and friend,
And borrowing dulls the edge of husbandry.
This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

Neither a borrower nor a lende
be

CASE 2 : SOURCE APPLICATION WRITES 'TEXT' AND 'PICT' FLAVOURS, DESTINATION APPLICATION SPECIFIES 'TEXT' AS PREFERRED FLAVOUR FOR READ

Clipboard Windows

Your application can provide a Show Clipboard command in the Edit menu which, when chosen, shows a
window which displays the current contents of the scrap. Such a window is known as a Clipboard
window. The Show Clipboard command should be toggled with a Hide Clipboard command to allow the
user to hide the Clipboard window when required.

Although the scrap may contain multiple scrap flavours, your Clipboard window should ordinarily display
the data in the application's preferred flavour only.

If the user has chosen to open the Clipboard window, your application should hide the window on receipt
of a suspend event (Classic event model) or kEventAppActivated event type (Carbon event model) and show
it when a resume event (Classic event model) or kEventAppDeactivated event type (Carbon event model) is
received. This is necessary because the contents of the scrap could change while the application is in the
background.

Transferring the Scrap to Disk — Mac OS 8/9

Although, on Mac OS 8/9, the scrap is usually located in memory, your application can write the contents
of the scrap in memory to a scrap file using UnloadScrap. You should do this only if memory is not large
enough to hold the data you need to write to the scrap. After writing the contents of the scrap to disk,
UnloadScrap releases the memory previously occupied by the scrap. Thereafter, any operations your
application performs on data in the scrap affect the scrap as stored in the scrap file on disk. You can use
LoadScrap to read the contents of the scrap file back into memory.

On Mac OS X, calls to LoadScrap and UnloadScrap are ignored.

Carbon Scrap Version 1.0 20-5

Main Carbon Scrap Manager Functions

The main Carbon Scrap Manager functions are as follows:

Function Description
GetCurrentScrap Gets a reference to the current scrap. (Note that this reference will become invalid and unusable

after the scrap is cleared.)
GetScrapFlavorFlags Determines whether the scrap contains data for a particular flavour and provides information

about that flavour if it exists. (Amongst other things, this function is useful for deciding whether
to enable the Paste item in your Edit menu.)

GetScrapFlavorSize Gets the size of the data of the specified flavour from the specified scrap.
GetScrapFlavorData Gets the data of the specified flavour from the specified scrap.
ClearCurrentScrap Clears the current scrap. This function should be called immediately the user requests a Copy or

Cut operation.
PutScrapFlavor Puts data on the scrap. Also promises data to the specified scrap (see below).

Associated Constants and Data Types

The following constants and data types are associated with the main Scrap Manager functions:

Scrap Flavour Type Constants

Constant Flavour Type Description
kScrapFlavorTypePicture 'PICT' Picture
kScrapFlavorTypeText 'TEXT' Text
kScrapFlavorTypeTextStyle 'styl' Text style
kScrapFlavorTypeMovie 'moov' Movie

Scrap Flavour Flag Constants

In the following, the first two constants may be passed in the flavorFlags parameter in calls to
PutScrapFlavour, and the third is received in the flavorFlags parameter in calls to GetScrapFlavorFlags:

Constant Meaning
kScrapFlavorMaskNone No flags required.
kScrapFlavorMaskSenderOnly Only the process which puts the flavour on the scrap can see it.

If another process puts a flavour with this flag on the scrap,your process will never see
the flavour. Accordingly, there is no point in testing for this flag.
This flag is typically used to save a private flavour to the scrap so that other promised
(see below) public flavours can be derived from it on demand.

kScrapFlavorMaskTranslated The flavour was translated, by the Translation Manager, from some other flavour in
the scrap. (Most callers should not care about this flag.)

ScrapFlavorInfo Data Type

The ScrapFlavorInfo data type describes a single flavour within a scrap and is used by those functions
which get information about the current scrap (GetScrapFlavorFlags, GetScrapFlavorSize, and
GetScrapFlavorData):

struct ScrapFlavorInfo
{
 ScrapFlavorType flavorType;
 ScrapFlavorFlags flavorFlags;
};
typedef struct ScrapFlavorInfo ScrapFlavorInfo;

20-6 Version 1.0 Carbon Scrap

Private Scrap
As an alternative to writing to and reading from the scrap whenever the user cuts, copies and pastes data,
your application can choose to use its own private scrap. An application which uses a private scrap
copies data to its private scrap when the user chooses the Cut or Copy command and pastes data from the
private scrap when the user chooses the Paste command.

Additional Actions — Old Scrap Manager

In the old pre-Carbon Scrap Manager, an application which used a private scrap had to take the following
additional actions whenever it received suspend and resume events:

• Suspend Event. On receipt of a suspend event, the application had to copy data from the private scrap
to the scrap.

• Resume Event. On receipt of a resume event, the application had to first examine the
convertClipboardFlag bit in the message field of the resume event structure to determine if the data in
the scrap had changed since the previous suspend event. If the data in the scrap had changed, the
application had to copy the data from the scrap to its private scrap. The application's menu
adjustment function enabled the Paste item if the data copied to the private scrap was of the preferred,
or other acceptable, type.

The process is illustrated at Fig 2.

FIG 2 - PRIVATE SCRAP AND SUSPEND AND RESUME EVENTS - OLD SCRAP MANAGER

WRITEREAD

WRITE READ

WRITEREAD

APPLICATION USES PRIVATE SCRAP

SUSPEND EVENT
APPLICATION COPIES PRIVATE

SCRAP TO SCRAP

RESUME EVENT
IF CONTENTS OF SCRAP HAVE

CHANGED, APPLICATION COPIES SCRAP
TO PRIVATE SCRAP APPLICATION USES UPDATED SCRAP

PRIVATE SCRAP PRIVATE SCRAP PRIVATE SCRAP PRIVATE SCRAP

SCRAP SCRAP SCRAP SCRAP

Additional Actions — Carbon Scrap Manager

In the preemptively scheduled Mac OS X, this rather straightforward approach is no longer feasible.
Consider the following scenario on Mac OS X:

• Application B, which has a private scrap, is the frontmost application. The user clicks in a window
belonging to application A to make application A the frontmost application. Application B receives a
suspend event and begins to convert its private scrap.

• While application B is still converting its private scrap, application A has become the frontmost
application, and the user clicks in its menu bar. Application A, needing to decide whether to enable

Carbon Scrap Version 1.0 20-7

the Paste item in its Edit menu, looks at the scrap to determine what flavours it contains. Because
application B has not finished converting its private scrap, and thus has not put anything onto the
scrap, application A finds nothing it wants on the scrap and, accordingly, disables the Paste item.

The situation in which application A finds itself with regard to the Paste item is not acceptable in terms of
human interface. The user cannot be expected to know that application B is still converting its scrap and
that application A’s Paste item will be enabled in due course.

Making Promises

The Carbon Scrap Manager eliminates this problem using the concept of promised flavours. If, in the
above example, application B calls PutScrapFlavor with NULL passed in the flavorData parameter whenever
the user chooses Cut or Copy, a promise is made that data of the flavour specified in the flavorType
parameter will later be placed on the scrap. On checking the scrap, application A will see the promise and
can thus enable its Paste item in the expectation that the actual data will eventually appear in the scrap.
The actual data can then be provided by application B through a subsequent call to PutScrapFlavor during
the execution of a scrap promise keeper (callback) function. (Scrap promise keeper callback functions
are called by the Carbon Scrap Manager as required to keep an earlier promise of a particular scrap
flavour.)

In the first (promise-making) call to PutScrapFlavor, passing a non-zero size in the flavorSize parameter is
optional; however, providing the size is advisable because callers of GetScrapFlavorSize will then be able to
avoid blocking. If the size is provided, the subsequent call to PutScrapFlavor must provide the same
amount of data as was promised. If the size is unknown at the time of the promise, your application should
pass kScrapFlavorSizeUnknown in the flavorSize parameter.

Note that the promise-making PutScrapFlavor call cannot be made when your application receives a
suspend event. This is because of the fundamental difference between the receipt of suspend events in
Carbon applications as compared with Classic applications (see Chapter 2). Making the promise each time
the user chooses Cut or Copy involves very little overhead, since only the promise, not the data, is being
placed on the scrap.

Calling In Promises

In applications that use the Classic event model, your application should invariably call
CallInScrapPromises on exit to cater for the possibility that it may have made promises that, after it quits, it
cannot possibly honour. CallInScrapPromises forces all promises to be kept. On Mac OS X, this action is
necessary even if your application has itself made no promises, the reason being that it is possible that,
unbeknown to the application, promises could have been made on its behalf. For example, when you copy
TEXT data (which has ASCII 13 for line endings) onto the scrap, the Carbon Scrap Manager promises other
flavours which have different line endings and/or text encodings so that Cocoa applications can paste.

Calling CallInScrapPromises is not necessary in applications which use the Carbon event model.

TextEdit, Dialogs, and Scrap

TextEdit and Scrap

TextEdit is a collection of functions and data structures which you can use to provide your application with
basic text editing capabilities.

If your application uses TextEdit in its windows, be aware that TextEdit maintains its own private scrap.
Accordingly:

• The special TextEdit functions TECut, TECopy, and TEToScrap are used in the processes of cutting text
from the document and copying text to the TextEdit private scrap and to the scrap.

• The special TextEdit functions TEPaste, TEStylePaste, and TEFromScrap are used in the processes of
pasting text from the TextEdit private scrap and copying text from the scrap to the TextEdit private
scrap.

20-8 Version 1.0 Carbon Scrap

Chapter 21 describes TextEdit, including the TextEdit private scrap and the TextEdit scrap-related
functions.

Dialogs and Scrap

Dialogs may contain edit text items, and the Dialog Manager uses TextEdit to perform the editing
operations within those items.

You can use the Dialog Manager to handle most editing operations within dialogs. The Dialog Manager
functions DialogCut, DialogCopy, and DialogPaste may be used to implement Cut, Copy and Paste commands
within edit text items in dialogs. (See the demonstration program at Chapter 8.)

TextEdit's private scrap facilitates the copying and pasting of data between dialogs. However, your
application itself must ensure that the user can copy and paste data between your application's dialogs and
its document windows. If your application uses TextEdit for all editing operations within its document
windows, this is easily achieved because TextEdit's TECut, TECopy, TEPaste, and TEStylePaste functions and
the Dialog Manager's DialogCut, DialogCopy, and DialogPaste functions all use TextEdit's private scrap.

Carbon Scrap Version 1.0 20-9

Main Carbon Scrap Manager Constants, Data Types, and Functions

Constants

Scrap Flavour Types
kScrapFlavorTypePicture = FOUR_CHAR_CODE('PICT') Picture
kScrapFlavorTypeText = FOUR_CHAR_CODE('TEXT') Text
kScrapFlavorTypeTextStyle = FOUR_CHAR_CODE('styl') Text style
kScrapFlavorTypeMovie = FOUR_CHAR_CODE('moov') Movie

Scrap Flavour Flags
kScrapFlavorMaskNone = 0x00000000
kScrapFlavorMaskSenderOnly = 0x00000001
kScrapFlavorMaskTranslated = 0x00000002

Promising Flavours
kScrapFlavorSizeUnknown = -1

Result Codes
internalScrapErr = -4988
duplicateScrapFlavorErr = -4989
badScrapRefErr = -4990
processStateIncorrectErr = -4991
scrapPromiseNotKeptErr = -4992
noScrapPromiseKeeperErr = -4993
nilScrapFlavorDataErr = -4994
scrapFlavorFlagsMismatchErr = -4995
scrapFlavorSizeMismatchErr = -4996
illegalScrapFlavorFlagsErr = -4997
illegalScrapFlavorTypeErr = -4998
illegalScrapFlavorSizeErr = -4999
scrapFlavorNotFoundErr = -102
needClearScrapErr = -100

Data Types
typedef struct OpaqueScrapRef *ScrapRef;
typedef FourCharCode ScrapFlavorType;
typedef UInt32 ScrapFlavorFlags;

ScrapFlavorInfo
struct ScrapFlavorInfo
{
 ScrapFlavorType flavorType;
 ScrapFlavorFlags flavorFlags;
};
typedef struct ScrapFlavorInfo ScrapFlavorInfo;

Functions

Obtaining a Reference to the Current Scrap
OSStatus GetCurrentScrap(ScrapRef *scrap);

Obtaining Information About a Specific Scrap Flavour
OSStatus GetScrapFlavorFlags(ScrapRef scrap,ScrapFlavorType flavorType,
 ScrapFlavorFlags *flavorFlags);

Obtaining the Size of Data of a Specified Scrap Flavour
OSStatus GetScrapFlavorSize(ScrapRef scrap,ScrapFlavorType flavorType,Size *byteCount);

Obtaining the Data of a Specified Scrap Flavour
OSStatus GetScrapFlavorData(ScrapRef scrap,ScrapFlavorType flavorType,Size *byteCount,
 void *destination);

20-10 Version 1.0 Carbon Scrap

Writing Data to the Scrap and Clearing the Scrap
OSStatus PutScrapFlavor(ScrapRef scrap,ScrapFlavorType flavorType,
 ScrapFlavorFlags flavorFlags, Size flavorSize,const void *flavorData);
OSStatus ClearCurrentScrap(void);

Scrap Promise Keeping
ScrapPromiseKeeperUPP NewScrapPromiseKeeperUPP(ScrapPromiseKeeperProcPtr userRoutine);
void DisposeScrapPromiseKeeperUPP(ScrapPromiseKeeperUPP userUPP);
OSStatus SetScrapPromiseKeeper(ScrapRef scrap,ScrapPromiseKeeperUPP upp,
 const void *userData);
OSStatus CallInScrapPromises(void);

Application-Defined (Callback) Function
OSStatus myScrapPromiseKeeperFunction(ScrapRef scrap,ScrapFlavorType flavorType,
 void *userData);

Transferring the Scrap Between Memory and Disk (Mac OS 8/9)
SInt32 UnloadScrap(void); // Does nothing when called on Mac OS X
SInt32 LoadScrap(void); // Does nothing when called on Mac OS X

Carbon Scrap Version 1.0 20-11

Demonstration Program CarbonScrap Listing
// ***
// CarbonScrap.c CARBON EVENT MODEL
// ***
//
// This program utilises Carbon Scrap Manager functions to allow the user to:
//
// • Cut, copy, clear, and paste text and pictures from and to two document windows opened by
// the program.
//
// • Paste text and pictures cut or copied from another application to the two document
// windows.
//
// • Open and close a Clipboard window, in which the current contents of the scrap are
// displayed.
//
// The program's preferred scrap flavour type is 'TEXT'. Thus, if the scrap contains data in
// both the 'TEXT' and 'PICT' flavour types, only the 'TEXT' flavour will be used for pastes
// to the document windows and display in the Clipboard window.
//
// In order to keep that part of the source code that is not related to the Carbon Scrap
// Manager to a minimum, the windows do not display insertion points, nor can the pictures be
// dragged within the windows. The text and pictures are not inserted into a document as
// such. Rather, when the Paste item in the Edit menu is chosen:
//
// • The text or picture on the Clipboard is simply drawn in the centre of the active window.
//
// • A handle to the text or picture is assigned to fields in a document structure associated
// with the window. (The demonstration program MonoTextEdit (Chapter 21) shows how to cut,
// copy, and paste text from and to a TextEdit structure using the scrap.)
//
// For the same reason, highlighting the selected text or picture in a window is simplified by
// simply inverting the image.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, and Edit menus (preload,
// non-purgeable).
//
// • A 'TEXT' resource (non-purgeable) containing text displayed in the left window at
// program start.
//
// • A 'PICT' resource (non-purgeable) containing a picture displayed in the right window at
// program start.
//
// • A 'STR#' resource (purgeable) containing strings to be displayed in the error Alert.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

// …… includes

#include <Carbon.h>

// ……… defines

#define rMenubar 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iClose 4
#define iQuit 12
#define mEdit 130

20-12 Version 1.0 Carbon Scrap

#define iCut 3
#define iCopy 4
#define iPaste 5
#define iClear 6
#define iClipboard 8
#define rText 128
#define rPicture 128
#define rErrorStrings 128
#define eFailMenu 1
#define eFailWindow 2
#define eFailDocStruc 3
#define eFailMemory 4
#define eClearScrap 5
#define ePutScrapFlavor 6
#define eGetScrapSize 7
#define eGetScrapData 8
#define kDocumentType 1
#define kClipboardType 2
#define MAX_UINT32 0xFFFFFFFF

// …… typedefs

typedef struct
{
 PicHandle pictureHdl;
 Handle textHdl;
 Boolean selectFlag;
 SInt16 windowType;
} docStructure, **docStructureHandle;

// …… global variables

Boolean gRunningOnX = false;
WindowRef gClipboardWindowRef = NULL;
Boolean gClipboardShowing = false;

// ……… function prototypes

void main (void);
void doPreliminaries (void);
OSStatus appEventHandler (EventHandlerCallRef,EventRef,void *);
OSStatus docWindowEventHandler (EventHandlerCallRef,EventRef,void *);
OSStatus clipWindowEventHandler (EventHandlerCallRef,EventRef,void *);
void doAdjustMenus (void);
void doMenuChoice (MenuID,MenuItemIndex);
void doErrorAlert (SInt16);
void doOpenDocumentWindows (void);
EventHandlerUPP doGetHandlerUPP (void);
void doCloseWindow (void);
void doInContent (Point);
void doCutCopyCommand (Boolean);
void doPasteCommand (void);
void doClearCommand (void);
void doClipboardCommand (void);
void doDrawClipboardWindow (void);
void doDrawDocumentWindow (WindowRef);
Rect doSetDestRect (Rect *,WindowRef);

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 EventTypeSpec applicationEvents[] = { { kEventClassApplication, kEventAppActivated },
 { kEventClassApplication, kEventAppDeactivated },
 { kEventClassCommand, kEventProcessCommand },
 { kEventClassMenu, kEventMenuEnableItems } };

Carbon Scrap Version 1.0 20-13

 // …… do preliminaries

 doPreliminaries();

 // ……… set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 doErrorAlert(eFailMenu);
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }

 gRunningOnX = true;
 }
 else
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 SetMenuItemCommandID(menuRef,iQuit,kHICommandQuit);
 }

 // ……… open document windows

 doOpenDocumentWindows();

 // ……… install application event handler

 InstallApplicationEventHandler(NewEventHandlerUPP((EventHandlerProcPtr) appEventHandler),
 GetEventTypeCount(applicationEvents),applicationEvents,
 0,NULL);

 // …… run application event loop

 RunApplicationEventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 MoreMasterPointers(96);
 InitCursor();
}

// *** appEventHandler

OSStatus appEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void * userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 HICommand hiCommand;
 MenuID menuID;
 MenuItemIndex menuItem;

 eventClass = GetEventClass(eventRef);

20-14 Version 1.0 Carbon Scrap

 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassApplication:
 if(eventKind == kEventAppActivated)
 {
 SetThemeCursor(kThemeArrowCursor);
 if(gClipboardWindowRef && gClipboardShowing)
 ShowWindow(gClipboardWindowRef);
 }
 else if(eventKind == kEventAppDeactivated)
 {
 if(gClipboardWindowRef && gClipboardShowing)
 ShowHide(gClipboardWindowRef,false);
 }
 break;

 case kEventClassCommand:
 if(eventKind == kEventProcessCommand)
 {
 GetEventParameter(eventRef,kEventParamDirectObject,typeHICommand,NULL,
 sizeof(HICommand),NULL,&hiCommand);
 menuID = GetMenuID(hiCommand.menu.menuRef);
 menuItem = hiCommand.menu.menuItemIndex;
 if((hiCommand.commandID != kHICommandQuit) &&
 (menuID >= mAppleApplication && menuID <= mEdit))
 {
 doMenuChoice(menuID,menuItem);
 result = noErr;
 }
 }
 break;

 case kEventClassMenu:
 if(eventKind == kEventMenuEnableItems)
 doAdjustMenus();
 result = noErr;
 break;
 }

 return result;
}

// *** docWindowEventHandler

OSStatus docWindowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void * userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 Point mouseLocation;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassWindow:
 GetEventParameter(eventRef,kEventParamDirectObject,typeWindowRef,NULL,sizeof(windowRef),
 NULL,&windowRef);
 switch(eventKind)
 {
 case kEventWindowDrawContent:
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
 if((*docStrucHdl)->pictureHdl != NULL || (*docStrucHdl)->textHdl != NULL)

Carbon Scrap Version 1.0 20-15

 doDrawDocumentWindow(windowRef);
 result = noErr;
 break;

 case kEventWindowClickContentRgn:
 GetEventParameter(eventRef,kEventParamMouseLocation,typeQDPoint,NULL,
 sizeof(mouseLocation),NULL,&mouseLocation);
 SetPortWindowPort(windowRef);
 GlobalToLocal(&mouseLocation);
 doInContent(mouseLocation);
 result = noErr;
 break;
 }
 break;
 }

 return result;
}

// ** clipWindowEventHandler

OSStatus clipWindowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void * userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 MenuRef editMenuRef;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 if(eventClass == kEventClassWindow)
 {
 switch(eventKind)
 {
 case kEventWindowActivated:
 case kEventWindowDeactivated:
 case kEventWindowDrawContent:
 doDrawClipboardWindow();
 result = noErr;
 break;

 case kEventWindowClose:
 DisposeWindow(gClipboardWindowRef);
 gClipboardWindowRef = NULL;
 gClipboardShowing = false;
 editMenuRef = GetMenuRef(mEdit);
 SetMenuItemText(editMenuRef,iClipboard,"\pShow Clipboard");
 break;
 }
 }

 return result;
}

// *** doAdjustMenus

void doAdjustMenus(void)
{
 MenuRef fileMenuRef, editMenuRef;
 docStructureHandle docStrucHdl;
 ScrapRef scrapRef;
 OSStatus osError;
 ScrapFlavorFlags scrapFlavorFlags;
 Boolean scrapHasText = false, scrapHasPicture = false;

 fileMenuRef = GetMenuRef(mFile);
 editMenuRef = GetMenuRef(mEdit);

20-16 Version 1.0 Carbon Scrap

 docStrucHdl = (docStructureHandle) GetWRefCon(FrontWindow());

 if((*docStrucHdl)->windowType == kClipboardType)
 EnableMenuItem(fileMenuRef,iClose);
 else
 DisableMenuItem(fileMenuRef,iClose);

 if(((*docStrucHdl)->pictureHdl || (*docStrucHdl)->textHdl) && ((*docStrucHdl)->selectFlag))
 {
 EnableMenuItem(editMenuRef,iCut);
 EnableMenuItem(editMenuRef,iCopy);
 EnableMenuItem(editMenuRef,iClear);
 }
 else
 {
 DisableMenuItem(editMenuRef,iCut);
 DisableMenuItem(editMenuRef,iCopy);
 DisableMenuItem(editMenuRef,iClear);
 }

 GetCurrentScrap(&scrapRef);

 osError = GetScrapFlavorFlags(scrapRef,kScrapFlavorTypeText,&scrapFlavorFlags);
 if(osError == noErr)
 scrapHasText = true;

 osError = GetScrapFlavorFlags(scrapRef,kScrapFlavorTypePicture,&scrapFlavorFlags);
 if(osError == noErr)
 scrapHasPicture = true;

 if((scrapHasText || scrapHasPicture) && ((*docStrucHdl)->windowType != kClipboardType))
 EnableMenuItem(editMenuRef,iPaste);
 else
 DisableMenuItem(editMenuRef,iPaste);

 DrawMenuBar();
}

// ** doMenuChoice

void doMenuChoice(MenuID menuID,MenuItemIndex menuItem)
{
 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mFile:
 if(menuItem == iClose)
 doCloseWindow();
 break;

 case mEdit:
 switch(menuItem)
 {
 case iCut:
 doCutCopyCommand(true);
 break;

 case iCopy:
 doCutCopyCommand(false);
 break;

Carbon Scrap Version 1.0 20-17

 case iPaste:
 doPasteCommand();
 break;

 case iClear:
 doClearCommand();
 break;

 case iClipboard:
 doClipboardCommand();
 break;
 }
 break;
 }
}

// ** doErrorAlert

void doErrorAlert(SInt16 errorCode)
{
 Str255 errorString;
 SInt16 itemHit;

 GetIndString(errorString,rErrorStrings,errorCode);
 StandardAlert(kAlertStopAlert,errorString,NULL,NULL,&itemHit);
 ExitToShell();
}

// *** doOpenDocumentWindows

void doOpenDocumentWindows(void)
{
 SInt16 a;
 OSStatus osError;
 WindowRef windowRef;
 Rect contentRect = { 43,7,223,297 }, theRect;
 Str255 title1 = "\pDocument A";
 Str255 title2 = "\pDocument B";
 docStructureHandle docStrucHdl;
 EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowDrawContent },
 { kEventClassWindow, kEventWindowClickContentRgn } };

 for(a=0;a<2;a++)
 {
 osError = CreateNewWindow(kDocumentWindowClass,kWindowStandardHandlerAttribute,
 &contentRect,&windowRef);
 if(osError != noErr)
 doErrorAlert(eFailWindow);

 if(a == 0)
 {
 SetWTitle(windowRef,"\pDocument A");
 OffsetRect(&contentRect,305,0);
 }
 else
 SetWTitle(windowRef,"\pDocument B");

 if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
 doErrorAlert(eFailDocStruc);
 SetWRefCon(windowRef,(SInt32) docStrucHdl);

 (*docStrucHdl)->pictureHdl = NULL;
 (*docStrucHdl)->textHdl = NULL;
 (*docStrucHdl)->windowType = kDocumentType;
 (*docStrucHdl)->selectFlag = false;

 SetPortWindowPort(windowRef);

 if(gRunningOnX)

20-18 Version 1.0 Carbon Scrap

 {
 GetWindowPortBounds(windowRef,&theRect);
 InsetRect(&theRect,40,40);
 ClipRect(&theRect);
 }
 else
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);

 if(a == 0)
 (*docStrucHdl)->textHdl = (Handle) GetResource('TEXT',rText);
 else
 (*docStrucHdl)->pictureHdl = GetPicture(rPicture);

 InstallWindowEventHandler(windowRef,doGetHandlerUPP(),GetEventTypeCount(windowEvents),
 windowEvents,0,NULL);

 ShowWindow(windowRef);
 }
}

// *** doGetHandlerUPP

EventHandlerUPP doGetHandlerUPP(void)
{
 static EventHandlerUPP windowEventHandlerUPP;

 if(windowEventHandlerUPP == NULL)
 windowEventHandlerUPP = NewEventHandlerUPP((EventHandlerProcPtr) docWindowEventHandler);

 return windowEventHandlerUPP;
}

// *** doCloseWindow

void doCloseWindow(void)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 MenuRef editMenuRef;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if((*docStrucHdl)->windowType == kClipboardType)
 {
 DisposeWindow(windowRef);
 gClipboardWindowRef = NULL;
 gClipboardShowing = false;
 editMenuRef = GetMenuRef(mEdit);
 SetMenuItemText(editMenuRef,iClipboard,"\pShow Clipboard");
 }
}

// *** doInContent

void doInContent(Point mouseLocation)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 GrafPtr oldPort;
 Rect theRect;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if((*docStrucHdl)->windowType == kClipboardType)
 return;

 GetPort(&oldPort);

Carbon Scrap Version 1.0 20-19

 SetPortWindowPort(windowRef);

 if((*docStrucHdl)->textHdl != NULL || (*docStrucHdl)->pictureHdl != NULL)
 {
 if((*docStrucHdl)->textHdl != NULL)
 {
 GetWindowPortBounds(windowRef,&theRect);
 InsetRect(&theRect,40,40);
 }
 else if((*docStrucHdl)->pictureHdl != NULL)
 {
 theRect = doSetDestRect(&(*(*docStrucHdl)->pictureHdl)->picFrame,windowRef);
 }

 if(PtInRect(mouseLocation,&theRect) && (*docStrucHdl)->selectFlag == false)
 {
 (*docStrucHdl)->selectFlag = true;
 InvertRect(&theRect);
 }
 else if(!PtInRect(mouseLocation,&theRect) && (*docStrucHdl)->selectFlag == true)
 {
 (*docStrucHdl)->selectFlag = false;
 InvertRect(&theRect);
 }
 }

 SetPort(oldPort);
}

// ** doCutCopyCommand

void doCutCopyCommand(Boolean cutFlag)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 OSStatus osError;
 ScrapRef scrapRef;
 Size dataSize;
 GrafPtr oldPort;
 Rect portRect;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if((*docStrucHdl)->selectFlag == false)
 return;

 osError = ClearCurrentScrap();
 if(osError == noErr)
 {
 GetCurrentScrap(&scrapRef);

 if((*docStrucHdl)->textHdl != NULL) // ……'TEXT'
 {
 dataSize = GetHandleSize((Handle) (*docStrucHdl)->textHdl);
 HLock((*docStrucHdl)->textHdl);

 osError = PutScrapFlavor(scrapRef,kScrapFlavorTypeText,kScrapFlavorMaskNone,
 dataSize,*((*docStrucHdl)->textHdl));
 if(osError != noErr)
 doErrorAlert(ePutScrapFlavor);
 }
 else if((*docStrucHdl)->pictureHdl != NULL) // …………………………………………………………………………………………… 'PICT'
 {
 dataSize = GetHandleSize((Handle) (*docStrucHdl)->pictureHdl);
 HLock((Handle) (*docStrucHdl)->pictureHdl);

 osError = PutScrapFlavor(scrapRef,kScrapFlavorTypePicture,kScrapFlavorMaskNone,
 dataSize,*((Handle) (*docStrucHdl)->pictureHdl));

20-20 Version 1.0 Carbon Scrap

 if(osError != noErr)
 doErrorAlert(ePutScrapFlavor);
 }

 if((*docStrucHdl)->textHdl != NULL)
 HUnlock((*docStrucHdl)->textHdl);
 if((*docStrucHdl)->pictureHdl != NULL)
 HUnlock((Handle) (*docStrucHdl)->pictureHdl);
 }
 else
 doErrorAlert(eClearScrap);

 if(cutFlag)
 {
 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 if((*docStrucHdl)->pictureHdl != NULL)
 {
 DisposeHandle((Handle) (*docStrucHdl)->pictureHdl);
 (*docStrucHdl)->pictureHdl = NULL;
 (*docStrucHdl)->selectFlag = false;
 }
 if((*docStrucHdl)->textHdl != NULL)
 {
 DisposeHandle((*docStrucHdl)->textHdl);
 (*docStrucHdl)->textHdl = NULL;
 (*docStrucHdl)->selectFlag = false;
 }

 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);

 SetPort(oldPort);
 }

 if(gClipboardWindowRef != NULL)
 doDrawClipboardWindow();
}

// ** doPasteCommand

void doPasteCommand(void)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 GrafPtr oldPort;
 ScrapRef scrapRef;
 OSStatus osError;
 ScrapFlavorFlags flavorFlags;
 Size sizeOfPictData = 0, sizeOfTextData = 0;
 Handle newTextHdl, newPictHdl;
 CFStringRef stringRef;
 Rect destRect, portRect;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 GetCurrentScrap(&scrapRef);

 // …… 'TEXT'

 osError = GetScrapFlavorFlags(scrapRef,kScrapFlavorTypeText,&flavorFlags);
 if(osError == noErr)
 {
 osError = GetScrapFlavorSize(scrapRef,kScrapFlavorTypeText,&sizeOfTextData);

Carbon Scrap Version 1.0 20-21

 if(osError == noErr && sizeOfTextData > 0)
 {
 newTextHdl = NewHandle(sizeOfTextData);
 osError = MemError();
 if(osError == memFullErr)
 doErrorAlert(eFailMemory);

 HLock(newTextHdl);

 osError = GetScrapFlavorData(scrapRef,kScrapFlavorTypeText,&sizeOfTextData,*newTextHdl);
 if(osError != noErr)
 doErrorAlert(eGetScrapData);

 // ……… draw text in window

 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 InsetRect(&portRect,40,40);

 if(!gRunningOnX)
 {
 TETextBox(*newTextHdl,sizeOfTextData,&portRect,teFlushLeft);
 }
 else
 {
 stringRef = CFStringCreateWithBytes(NULL,(UInt8 *) *newTextHdl,sizeOfTextData,
 smSystemScript,false);
 DrawThemeTextBox(stringRef,kThemeSmallSystemFont,kThemeStateActive,true,&portRect,
 teFlushLeft,NULL);
 if(stringRef != NULL)
 CFRelease(stringRef);
 }

 HUnlock(newTextHdl);

 (*docStrucHdl)->selectFlag = false;

 // ………………………………………………………………………… assign handle to new text to window's document structure

 if((*docStrucHdl)->textHdl != NULL)
 DisposeHandle((*docStrucHdl)->textHdl);
 (*docStrucHdl)->textHdl = newTextHdl;

 if((*docStrucHdl)->pictureHdl != NULL)
 DisposeHandle((Handle) (*docStrucHdl)->pictureHdl);
 (*docStrucHdl)->pictureHdl = NULL;
 }
 else
 doErrorAlert(eGetScrapSize);
 }

 // ……… ' PICT'

 else
 {
 (osError = GetScrapFlavorFlags(scrapRef,kScrapFlavorTypePicture,&flavorFlags));
 if(osError == noErr)
 {
 osError = GetScrapFlavorSize(scrapRef,kScrapFlavorTypePicture,&sizeOfPictData);
 if(osError == noErr && sizeOfPictData > 0)
 {
 newPictHdl = NewHandle(sizeOfPictData);
 osError = MemError();
 if(osError == memFullErr)
 doErrorAlert(eFailMemory);

 HLock(newPictHdl);

 osError = GetScrapFlavorData(scrapRef,kScrapFlavorTypePicture,&sizeOfPictData,

20-22 Version 1.0 Carbon Scrap

 *newPictHdl);
 if(osError != noErr)
 doErrorAlert(eGetScrapData);

 // …… draw picture in window

 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 (*docStrucHdl)->selectFlag = false;
 destRect = doSetDestRect(&(*(PicHandle) newPictHdl)->picFrame,windowRef);
 DrawPicture((PicHandle) newPictHdl,&destRect);

 HUnlock(newPictHdl);

 (*docStrucHdl)->selectFlag = false;

 // …………………………………………………………… assign handle to new picture to window's document structure

 if((*docStrucHdl)->pictureHdl != NULL)
 DisposeHandle((Handle) (*docStrucHdl)->pictureHdl);
 (*docStrucHdl)->pictureHdl = (PicHandle) newPictHdl;

 if((*docStrucHdl)->textHdl != NULL)
 DisposeHandle((Handle) (*docStrucHdl)->textHdl);
 (*docStrucHdl)->textHdl = NULL;
 }
 else
 doErrorAlert(eGetScrapSize);
 }
 }

 SetPort(oldPort);
}

// ** doClearCommand

void doClearCommand(void)
{
 WindowRef windowRef;
 docStructureHandle docStrucHdl;
 GrafPtr oldPort;
 Rect portRect;

 windowRef = FrontWindow();
 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 if((*docStrucHdl)->textHdl != NULL)
 {
 DisposeHandle((*docStrucHdl)->textHdl);
 (*docStrucHdl)->textHdl = NULL;
 }

 if((*docStrucHdl)->pictureHdl != NULL)
 {
 DisposeHandle((Handle) (*docStrucHdl)->pictureHdl);
 (*docStrucHdl)->pictureHdl = NULL;
 }

 (*docStrucHdl)->selectFlag = false;

 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);

 SetPort(oldPort);
}

Carbon Scrap Version 1.0 20-23

// ** doClipboardCommand

void doClipboardCommand(void)
{
 MenuRef editMenuRef;
 OSStatus osError;
 Rect contentRect = { 254,7,384,603 };
 docStructureHandle docStrucHdl;
 EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowActivated },
 { kEventClassWindow, kEventWindowDeactivated },
 { kEventClassWindow, kEventWindowDrawContent },
 { kEventClassWindow, kEventWindowClose } };
 editMenuRef = GetMenuRef(mEdit);

 if(gClipboardWindowRef == NULL)
 {
 osError = CreateNewWindow(kDocumentWindowClass,kWindowStandardHandlerAttribute |
 kWindowCloseBoxAttribute,&contentRect,&gClipboardWindowRef);
 if(osError != noErr)
 doErrorAlert(eFailWindow);

 SetWTitle(gClipboardWindowRef,"\pClipboard");
 SetPortWindowPort(gClipboardWindowRef);

 if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
 doErrorAlert(eFailDocStruc);

 SetWRefCon(gClipboardWindowRef,(SInt32) docStrucHdl);
 (*docStrucHdl)->windowType = kClipboardType;

 SetMenuItemText(editMenuRef,iClipboard,"\pHide Clipboard");

 InstallWindowEventHandler(gClipboardWindowRef,
 NewEventHandlerUPP((EventHandlerProcPtr) clipWindowEventHandler),
 GetEventTypeCount(windowEvents),windowEvents,0,NULL);

 ShowWindow(gClipboardWindowRef);
 gClipboardShowing = true;
 }
 else
 {
 if(gClipboardShowing)
 {
 HideWindow(gClipboardWindowRef);
 gClipboardShowing = false;
 SetMenuItemText(editMenuRef,iClipboard,"\pShow Clipboard");
 }
 else
 {
 ShowWindow(gClipboardWindowRef);
 gClipboardShowing = true;
 SetMenuItemText(editMenuRef,iClipboard,"\pHide Clipboard");
 }
 }
}

// *** doDrawClipboardWindow

void doDrawClipboardWindow(void)
{
 GrafPtr oldPort;
 Rect theRect, textBoxRect;
 ScrapRef scrapRef;
 OSStatus osError;
 ScrapFlavorFlags flavorFlags;
 CFStringRef stringRef;
 Handle tempHdl;
 Size sizeOfPictData = 0, sizeOfTextData = 0;

20-24 Version 1.0 Carbon Scrap

 RGBColor blackColour = { 0x0000, 0x0000, 0x0000 };

 GetPort(&oldPort);
 SetPortWindowPort(gClipboardWindowRef);

 GetWindowPortBounds(gClipboardWindowRef,&theRect);
 EraseRect(&theRect);

 SetRect(&theRect,-1,-1,597,24);
 DrawThemeWindowHeader(&theRect,gClipboardWindowRef == FrontWindow());

 if(gClipboardWindowRef == FrontWindow())
 TextMode(srcOr);
 else
 TextMode(grayishTextOr);

 SetRect(&textBoxRect,10,5,120,20);
 DrawThemeTextBox(CFSTR("Clipboard Contents:"),kThemeSmallSystemFont,0,true,&textBoxRect,
 teJustLeft,NULL);

 GetCurrentScrap(&scrapRef);

 // …… 'TEXT'

 osError = GetScrapFlavorFlags(scrapRef,kScrapFlavorTypeText,&flavorFlags);
 if(osError == noErr)
 {
 osError = GetScrapFlavorSize(scrapRef,kScrapFlavorTypeText,&sizeOfTextData);
 if(osError == noErr && sizeOfTextData > 0)
 {
 SetRect(&textBoxRect,120,5,597,20);
 DrawThemeTextBox(CFSTR("Text"),kThemeSmallSystemFont,0,true,&textBoxRect,teJustLeft,
 NULL);

 tempHdl = NewHandle(sizeOfTextData);
 osError = MemError();
 if(osError == memFullErr)
 doErrorAlert(eFailMemory);

 HLock(tempHdl);

 osError = GetScrapFlavorData(scrapRef,kScrapFlavorTypeText,&sizeOfTextData,*tempHdl);
 if(osError != noErr)
 doErrorAlert(eGetScrapData);

 // ……… draw text in clipboard window

 GetWindowPortBounds(gClipboardWindowRef,&theRect);
 theRect.top += 22;
 InsetRect(&theRect,2,2);

 if(sizeOfTextData >= 965)
 sizeOfTextData = 965;
 stringRef = CFStringCreateWithBytes(NULL,(UInt8 *) *tempHdl,sizeOfTextData,
 CFStringGetSystemEncoding(),true);
 DrawThemeTextBox(stringRef,kThemeSmallSystemFont,0,true,&theRect,teFlushLeft,NULL);
 if(stringRef != NULL)
 CFRelease(stringRef);

 HUnlock(tempHdl);
 DisposeHandle(tempHdl);
 }
 else
 doErrorAlert(eGetScrapSize);
 }

 // …… 'PICT'

 else

Carbon Scrap Version 1.0 20-25

 {
 osError = GetScrapFlavorFlags(scrapRef,kScrapFlavorTypePicture,&flavorFlags);
 if(osError == noErr)
 {
 osError = GetScrapFlavorSize(scrapRef,kScrapFlavorTypePicture,&sizeOfPictData);
 if(osError == noErr && sizeOfPictData > 0)
 {
 SetRect(&textBoxRect,120,5,597,20);
 DrawThemeTextBox(CFSTR("Picture"),kThemeSmallSystemFont,0,true,&textBoxRect,
 teJustLeft,NULL);

 tempHdl = NewHandle(sizeOfPictData);
 osError = MemError();
 if(osError == memFullErr)
 doErrorAlert(eFailMemory);

 HLock(tempHdl);

 osError = GetScrapFlavorData(scrapRef,kScrapFlavorTypePicture,&sizeOfPictData,
 *tempHdl);
 if(osError != noErr)
 doErrorAlert(eGetScrapData);

 // …… draw picture in clipboard window

 theRect = (*(PicHandle) tempHdl)->picFrame;
 OffsetRect(&theRect,-((*(PicHandle) tempHdl)->picFrame.left - 2),
 -((*(PicHandle) tempHdl)->picFrame.top - 26));
 DrawPicture((PicHandle) tempHdl,&theRect);

 HUnlock(tempHdl);
 DisposeHandle(tempHdl);
 }
 else
 doErrorAlert(eGetScrapSize);
 }
 }

 TextMode(srcOr);
 SetPort(oldPort);
}

// ** doDrawDocumentWindow

void doDrawDocumentWindow(WindowRef windowRef)
{
 GrafPtr oldPort;
 docStructureHandle docStrucHdl;
 Rect destRect;
 CFStringRef stringRef;

 GetPort(&oldPort);
 SetPortWindowPort(windowRef);

 docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

 if((*docStrucHdl)->textHdl != NULL)
 {
 GetWindowPortBounds(windowRef,&destRect);
 EraseRect(&destRect);
 InsetRect(&destRect,40,40);

 stringRef = CFStringCreateWithBytes(NULL,(UInt8 *) *(*docStrucHdl)->textHdl,
 GetHandleSize((*docStrucHdl)->textHdl),
 smSystemScript,false);
 DrawThemeTextBox(stringRef,kThemeSmallSystemFont,0,true,&destRect,teFlushLeft,NULL);
 if(stringRef != NULL)
 CFRelease(stringRef);

20-26 Version 1.0 Carbon Scrap

 if((*docStrucHdl)->selectFlag)
 InvertRect(&destRect);
 }
 else if((*docStrucHdl)->pictureHdl != NULL)
 {
 destRect = doSetDestRect(&(*(*docStrucHdl)->pictureHdl)->picFrame,windowRef);
 DrawPicture((*docStrucHdl)->pictureHdl,&destRect);
 if((*docStrucHdl)->selectFlag)
 InvertRect(&destRect);
 }

 SetPort(oldPort);
}

// *** doSetDestRect

Rect doSetDestRect(Rect *picFrame,WindowRef windowRef)
{
 Rect destRect, portRect;
 SInt16 diffX, diffY;

 destRect = *picFrame;
 GetWindowPortBounds(windowRef,&portRect);

 OffsetRect(&destRect,-(*picFrame).left,-(*picFrame).top);

 diffX = (portRect.right - portRect.left) - ((*picFrame).right - (*picFrame).left);
 diffY = (portRect.bottom - portRect.top) - ((*picFrame).bottom - (*picFrame).top);

 OffsetRect(&destRect,diffX / 2,diffY / 2);

 return destRect;
}

// ***

Carbon Scrap Version 1.0 20-27

Demonstration Program CarbonScrap Comments
When this program is run, the user should choose the Edit menu's Show Clipboard item to open the Clipboard
window. The user should then cut, copy, clear and paste the supplied text or picture from/to the two
document windows opened by the program, noting the effect on the scrap as displayed in the Clipboard
window. (To indicate selection, the text or picture inverts when the user clicks on it with the mouse.
The text and picture can be deselected by clicking outside their boundaries.)

The user should also copy text and pictures from another application's window, observing the changes to
the contents of the Clipboard window when the demonstration program is brought to the front, and paste
that text and those pictures to the document windows. (On Mac OS 8/9, a simple way to get a picture into
the scrap is to use Command-Shift-Control-4 to copy an area of the screen to the scrap.)

The program's preferred scrap flavour type is 'TEXT'. Thus, if the scrap contains data in both the 'TEXT'
and 'PICT' flavour types, only the 'TEXT' flavour will be used for pastes to the document windows and for
display in the Clipboard window. The user can prove this behaviour by copying a picture object containing
text in an application such as Adobe Illustrator, bringing the demonstration program to the front, noting
the contents of the Clipboard window, pasting to one of the document windows, and noting what is pasted.

The user should note that, when the Clipboard window is open and showing, it will be hidden when the
program is sent to the background and shown again when the program is brought to the foreground.

defines
kDocumentType and kClipboardType will enable the program to distinguish between the "document" windows
opened by the program and the Clipboard window.

typedefs
Document structures will be attached to the two document windows and the Clipboard window. docStructure
is the associated data type. The windowType field will be used to differentiate between the document
windows and the Clipboard window.

Global Variables
gClipBoardWindowRef will be assigned a reference to the Clipboard window when it is opened by the user.
gClipBoardShowing will keep track of whether the Clipboard window is currently hidden or showing.

appEventHandler
When the kEventAppActivated event type is received, if the Clipboard window has been opened and was
showing when the program was sent to the background, ShowWindow is called to show the Clipboard window.
When the kEventAppActivated event type is received, if the Clipboard window has been opened and is
currently showing, ShowHide is called to hide the Clipboard window. ShowHide, rather than HideWindow is
used in this instance to prevent activation of the first document window in the list when the Clipboard
window is in front and the application is switched out.

windowEventHandler
windowEventHandler is the handler for the document windows. When the kEventWindowClickContentRegion event
type is received, the function doInContent is called.

clipWindowEventHandler
clipWindowEventHandler is the handler for the Clipboard window. The function doDrawClipboardWindow is
called when the window receives the event types kEventWindowActivated, kEventWindowDeactivated,
kEventWindowDrawContent are received. When the kEventWindowClose event type is received, the Clipboard
window is disposed of and the text of its item in the Edit menu is changed.

doAdjustMenus
If the front window is the Clipboard window, the Close item is enabled, otherwise it is disabled. If the
document contains a picture and that picture is currently selected, the Cut, Copy, and Clear items are
enabled, otherwise they are disabled.

If the scrap contains data of flavour type 'PICT' or flavour type 'TEXT', and the front window is not the
Clipboard window, the Paste item is enabled, otherwise it is disabled. In this section, GetCurrentScrap
is called to obtain a reference to the current scrap. This reference is then passed in two calls to
GetScrapFlavorFlags, which determine whether the scrap contains data of the flavour type 'PICT' and/or
flavour type 'TEXT'. If it does, and if the front window is not the Clipboard window, the Paste item is
enabled.

20-28 Version 1.0 Carbon Scrap

doOpenDocumentWindows
doOpenDocumentWindows opens the two document windows, creates document structures for each window,
attaches the document structures to the windows and initialises the fields of the document structures.

The textHdl field of the first window's document structure is assigned a handle to a 'TEXT' resource and
the textHdl field of the second window's document structure is assigned a handle to a 'PICT' resource.

doCloseWindow
doCloseWindow closes the Clipboard window (the only window that can be closed from within the program).

If the window is the Clipboard window, the window is disposed of, the global variable which contains its
reference is set to NULL, the global variable which keeps track of whether the window is showing or hidden
is set to false, and the text of the Show/Hide Clipboard menu item is set to "Show Clipboard".

doInContent
doInContent handles mouse-down events in the content region of a document window. If the window contains
text or a picture, and if the mouse-down was inside the text or picture, the text or picture is selected.
If the window contains a text or picture, and if the mouse-down was outside the text or picture, the text
or picture is deselected.

The first two lines get a reference to the front window and a handle to its document structure. If the
front window is the Clipboard window, the function returns immediately.

doCutCopyCommand
doCutCopyCommand handles the user's choice of the Cut and Copy items in the Edit menu.

The first two lines get a reference to the front window and a handle to that window's document structure.

If the selectFlag field of the document structure contains false (meaning that the text or picture has not
been selected), the function returns immediately. (Note that no check is made as to whether the front
window is the Clipboard window because the menu adjustment function disables the Cut and Copy items when
the Clipboard window is the front window, meaning that this function can never be called when the
Clipboard window is in front.)

ClearCurrentScrap attempts to clear the current scrap. (This call should always be made immediately the
user chooses Cut or Copy.) If the call is successful, GetCurrentScrap then gets a reference to the scrap.

If the selected item is text, GetHandleSize gets the size of the text from the window's document
structure. (In a real application, code which gets the size of the selection would appear here.)
PutScrapFlavor copies the "selected" text to the scrap. If the call to PutScrapFlavor is not successful,
an alert is displayed to advise the user of the error.

If the selected item is a picture, GetHandleSize gets the size of the picture from the window's document
structure. PutScrapFlavor copies the selected picture to the scrap. If the call to PutScrapFlavor is not
successful, an alert is displayed to advise the user of the error.

If the menu choice was the Cut item, additional action is taken. Preparatory to a call to EraseRect, the
current graphics port is saved and the front window's port is made the current port. DisposeHandle is
called to dispose of the text or picture and the document structure's textHdl or pictureHdl field, and
selectFlag field, are set to NULL and false respectively. EraseRect then erases the port rectangle. (In
a real application, the action taken in this block would be to remove the selected text or picture from
the document.)

Finally, and importantly, if the Clipboard window has previously been opened by the user,
doDrawClipboardWindow is called to draw the current contents of the scrap in the Clipboard window.

doPasteCommand
doPasteCommand handles the user's choice of the Paste item from the Edit menu. Note that no check is made
as to whether the front window is the Clipboard window because the menu adjustment function disables the
Paste item when the Clipboard window is the front window, meaning that this function can never be called
when the Clipboard window is in front.

GetCurrentScrap gets a reference to the scrap.

The first call to GetScrapFlavorFlags determines whether the scrap contains data of flavour type 'TEXT'.
If so, GetScrapFlavorSize is called to get the size of the 'TEXT' data. NewHandle creates a relocatable

Carbon Scrap Version 1.0 20-29

block of a size equivalent to the 'TEXT' data. GetScrapFlavorData is called to copy the 'TEXT' data in
the scrap to this block.

TETextBox or DrawThemeTextBox is called to draw the text in a rectangle equal to the port rectangle minus
40 pixels all round. If the textHdl field of the window's document structure does not contain NULL, the
associated block is disposed of, following which the handle to the block containing the new 'TEXT' data is
then assigned to the textHdl field. (In a real application, this block would copy the text into the
document at the insertion point.) (The last three lines in this section simply ensure that, if the
window's "document" contains text, it cannot also contain a picture. This is to prevent a picture
overdrawing the text when the window contents are updated.)

If the scrap does not contain data of flavour type 'TEXT', GetScrapFlavorFlags is called again to
determine whether the scrap contains data of flavour type 'PICT'. If it does, much the same procedure is
followed, except that rectangle in which the picture is drawn is extracted from the 'PICT' data itself and
adjusted to the middle of the window via a call to the function doSetDestRec.

It is emphasized that the scrap is only checked for flavour type 'PICT' if the scrap does not contain
flavour type 'TEXT'. Thus, if both flavours exist in the scrap, only the 'TEXT' flavour will be used to
draw the Clipboard.

doClearCommand
doClearCommand handles the user's choice of the Clear item in the Edit menu.

Note that no check is made as to whether the front window is the Clipboard window because the menu
adjustment function disables the Clear item when the Clipboard window is the front window.

If the front window's document structure indicates that the window contains text or a picture, the block
containing the TextEdit structure or Picture structure is disposed of and the relevant field of the
document structure is set to NULL. In addition, the selectFlag field of the document structure is set to
false and the window's port rectangle is erased.

doClipboardCommand
doClipboardCommand handles the user's choice of the Show/Hide Clipboard item in the Edit menu.

The first line gets a reference to the Edit menu. This will be required in order to toggle the Show/Hide
Clipboard item's text between Show Clipboard and Hide Clipboard.

The if statement checks whether the Clipboard window has been created. If not, the Clipboard window is
created by the call to GetNewCWindow, a document structure is created and attached to the window, the
windowType field of the document structure is set to indicate that the window is of the Clipboard type,
the Show/Hide Clipboard menu item text is set, the window's special window event handler is installed, the
window is shown, and a global variable which keeps track of whether the Clipboard window is currently
showing or hidden is set to true.

If the Clipboard window has previously been created, and if the window is currently showing, the window is
hidden, the Clipboard-showing flag is set to false, and the Show/Hide Clipboard item's text is set to
"Show Clipboard". If the window is not currently showing, the window is made visible, the Clipboard-
showing flag is set to true, and the Show/Hide Clipboard item's text is set to "Hide Clipboard".

doDrawClipboardWindow
doDrawClipboardWindow draws the contents of the scrap in the Clipboard window. It supports the drawing of
both 'PICT' and 'TEXT' flavour type data.

The first four lines save the current graphics port, make the Clipboard window's graphics port the current
graphics port and erase the window's content region.

DrawThemeWindowHeader draws a window header in the top of the window. Text describing the type of data in
the scrap will be drawn in this header.

The text mode for text drawing is set at the next four lines, following which "Clipboard Contents:" is
drawn in the header.

The code for getting a reference to the current scrap, checking for the 'TEXT' and 'PICT' flavour types,
getting the flavour size, getting the flavour data, and drawing the text and picture in the window is much
the same as in the function doPasteCommand. The differences are: the rectangle in which the text is drawn
is the port rectangle minus two pixels all round and with the top further adjusted downwards by the height
of the window header; the left/top of the rectangle in which the picture is drawn is two pixels inside the

20-30 Version 1.0 Carbon Scrap

left side of the content region and two pixels below the window header respectively; the words "Text" or
"Picture" are drawn in the window header as appropriate.

Note that, as was the case in the function doPasteCommand, the scrap is only checked for flavour type
'PICT' if the scrap does not contain flavour type 'TEXT'. Thus, if both flavours exist in the scrap, only
the 'TEXT' flavour will be used to draw the Clipboard.

doDrawDocumentWindow
doDrawDocumentWindow draws the text or picture belonging to that window in the window. It is called when
the kEventWindowDrawContent event type is received for the window.

	The Carbon Scrap Manager and the Scrap
	Introduction
	Location of the Scrap
	Scrap Reference
	Scrap Flavours
	Standard Scrap Flavours
	Optional Flavours
	Private Flavours
	Preferred Flavour

	Implementing Edit Menu Commands
	Cut and Copy — Putting Data in the Scrap
	Paste — Getting Data From the Scrap
	Enabling the Paste Menu Item

	Example

	Clipboard Windows
	Transferring the Scrap to Disk — Mac OS 8/9
	Main Carbon Scrap Manager Functions
	Associated Constants and Data Types
	Scrap Flavour Type Constants
	Scrap Flavour Flag Constants
	ScrapFlavorInfo Data Type

	Private Scrap
	Additional Actions — Old Scrap Manager
	Additional Actions — Carbon Scrap Manager
	Making Promises
	Calling In Promises

	TextEdit, Dialogs, and Scrap
	TextEdit and Scrap
	Dialogs and Scrap

	Main Carbon Scrap Manager Constants, Data Types, and Functions
	Demonstration Program CarbonScrap Listing
	Demonstration Program CarbonScrap Comments

